Our guide to the future of the iPhone continues. The next topic of discussion is:

Battery & charging developments

Again and again the UK Tech Weekly Podcast returns to the topic of 'peak smartphone': the idea that the smartphone's golden period of rapid technological advances and wide experiential differences (between one generation and the next, or between one manufacturer and another) is now over.

The smartphone has become commoditised, and there are only small, iterative differences between the phone that just launched and the one you bought last year - hence less incentive to upgrade. Smartphones are now essentially 'good enough'.

Well, maybe. Perhaps the greatest potential growth area - yet, for various counterintuitive reasons, one of the most neglected thus far - is battery life. Battery tech keeps getting better, but smartphone makers (and Apple is just as guilty of this as anyone) keep cramming more power-hungry components into a slimmer chassis so the battery life ends up staying roughly the same.

In the next few years, we suspect, battery life is going to become more of a priority for phone makers and consumers. Partly this is because phones are now about as slim and fast as anyone could ever want; but partly it's because some cool battery tech developments are starting to come within the reach of mobile consumer budgets.

iPhone 9 rumours & patents: Battery life

Below we look at some of the new technologies coming to batteries and charging. Read more: How to improve iPhone battery life.

Waterproof lightning port

Over the years the iPhone has become more and more water resistant, but the main thing stopping Apple from being able to make the iPhone completely waterproof is the existence of the port for the charging cable.

Apple uses its own standard called Lightning for plugging things into the iPhone - a point of contention for many people who'd rather Apple had used USB Type C like it does on it's Macs (and like the rest of the industry).

It looks like Lightning is here to stay, but Apple could be planning to change the design to accommodate a clever way of making it more waterproof. A patent that was awarded to Apple in March 2018 describes a way in which a new kind of lightning port would create a liquid-tight seal, that would actually require you to use software on the phone to trigger.

The idea is that the plug on the Lightning cable (or the accessory you were plugging into the iPhone - it seems this is designed for use with accessories that need to be waterproof) would be wedge shaped, and you would have to squeeze it into the iPhone charging port which would be made from a deformable material that would expand once connected to create a seal. There would actually be generator and pistons that would expand the material and Apple's suggested a way that would make it possible for the iPhone to vibrate to let the user know this was happening.

Because the seal would be so tight the user would have to use software to unplug it - triggering the deformable material to deflate so you can unplug the cable or accessory.

It seems that this would be a way make accessories waterproof, rather than making the iPhone waterproof. So it might be a feature you could find in an accessory that would allow the iPhone to be used underwater, or, more likely, an accessory used in certain industries where liquids are present and iPhones or iPads are used, explains The Verge in their March 2018 article about this patent.

USB Type C to replace Lightning port?

A report from DigiTimes in June 2018 suggests that Apple is considering switching iPhone and iPads to USB-C from 2019.

Apparently analog IC venders say that by adopting USB Type C on the iPhone Apple will accelerate the adoption of the new interface across the industry.

Despite this rumour the general consensus is that it is unlikely that Apple would make such a move.

Lithium-air batteries

The capacity and efficiency of batteries is sure to increase over the next few years, and may do so dramatically if lithium-oxygen cells (also known as lithium-air) become a reality. As a Nature study (you'll need to pay to read the full article) explains, Li-O2 batteries offer theoretically far higher lifetimes than the lithium-ion equivalents currently favoured in mobile devices - maybe as much as five times as much, although technological issues remain.

But we're still thinking in terms of conventional battery principles: batteries than need to be charged up from a mains supply, and then run down, and then need to be charged up again.

Motion charging

A different approach is offered by technologies such as motion charging, a principle that has been used in numerous watches going back many years and was reportedly considered by Apple when putting together the first Apple Watch.

It uses kinetic energy from your own movements to charge up a battery cell. The traditional model would be for a wristwatch to harness the power of your arm swinging back and forth throughout the day, but similar methods have been used by wearable phone chargers that generate sufficient power in this way to give an extra hour of life to the average phone from a mere, er, 5,000 steps.

Okay, so the tech needs improvement to achieve mass-market acceptance, and it would be better still if technology of this kind could be integrated into the body of the phone itself (it's also vital for it to be able to collect a worthwhile amount of power from the smaller-scale movements experienced by a phone in a pocket or handbag rather than on the end of an arm). But it's an appealingly sustainable way of collecting some of that energy you're otherwise wasting on things like 'moving from one place to another' and 'getting fit'.

iPhone 9 rumours: Ampy motion charging battery pack


A similar technology category that seems likely in the foreseeable future to supplement rather than supplant traditional battery-charging methods is solar power. Sunpartner Technologies has developed a lightweight skin/case that wraps around a mobile device and collects energy from light that falls on it. This is designed to work with both indoor and natural light, but is obviously better with the latter; in the right circumstances the tech could add some 10 to 15 percent to battery life.

Apple, of course, has been committing itself to a greener approach for some time now, and a patent awarded in 2015 demonstrates this strategy in action.

The patent suggests that Apple is planning to build solar cells underneath the touchscreen on smartphones in future. The panel would recharge during the day and you wouldn't need to plug your phone into the socket any more. Good for the planet, convenient for us.

Solar clothing

So much for solar cells on your phone itself. But that's a relatively small area for collecting energy. What about the clothed surface area on your body?

University researchers have developed 'smart fibres' that can be used to create clothing that collects and stores solar energy throughout the day, then recharge portable devices that are running low on power. The fibres contain a dye-sensitised solar cell and a fibre supercapacitor, and can be cut and tailored without disrupting the operation of the energy collection process.

iPhone 9 & beyond: Solar charging

"Energy harvesting is significant," said Paul Weiss, editor-in-chief of ACS Nano, to Mashable.

"Will clothing be a significant contributor to the power we acquire and use? We do not know yet. But as a field, we are exploring these ideas in addition to addressing the question of 'how' energy harvesting might work."

There remain obstacles to overcome before solar clothing drops into the mainstream; for one thing, the dye used in this particular execution of the concept is environmentally unfriendly, according to the research team, containing potentially dangerous volatile organic compounds. The textile also isn't waterproof.

But give it a few years and we could all be wearing the stuff. Rigoberto Advincula, a professor of macromolecular science at Case Western Reserve University in Cleveland, estimated that the first commercial product using this textile device could become available in about the next five years - most likely starting with military and outdoors applications.

Recycling a phone's wasted energy

While we're on the subject of energy-harvesting, technology exists right now that can recapture energy emitted from your phone in the form of radio waves (the wasted ones, not the ones essential to communication) and then feed it back into the battery. This isn't a long-term solution: some energy will inevitably be lost through emitted waves alone, and you've got all the power being used running the internal components and lighting up the screen, among other issues. But it means your battery runs down slower - 25 to 30 percent, the makers say.

These three in their present form - niche, semi-experimental, relatively costly, non-integrated, offering significant but not experience-changing increases to battery life and just generally a bit of a faff - are not enormously appealing to the average smartphone owner. But if we jump ahead 10 years, maybe less, imagine an iPhone with all three (and similar related tech) built discreetly into the case: harvesting energy from your bodily movements, from ambient light, and from the phone's own emitted radio waves. To the extent that battery life ceases to be a concern - to the extent, perhaps, where mobile batteries become self-sustaining. What a thought.

We are indebted for the help we gained when writing the above thoughts to Technology Review's helpful summary of the future of battery technology.

Self-healing battery tech

We're seeing lots of exciting breakthroughs in the field of battery technology. Most relate to more efficient and environmentally friendly ways of charging a battery. One of the weirdest focuses on another aspect entirely: mending a battery cell after it gets broken.

Researchers at the University of California, led by Amay Bandodkar, have created working examples of batteries containing magnetised particles that pull themselves back together after being snapped into two pieces as a form of makeshift self-healing. (You can read the study here.)

And the principle isn't limited to batteries: the researchers have also tested self-healing circuits and sensors.

Could a future smartphone use this development to mend itself after a catastrophic breakage? Probably not, although some version of it, a long way down the line, could make the internals of our consumer electronics better able to carry on working after suffering serious damage. (At present the healing process is more of a temporary workaround than a long-term fix.) The most likely applications, certainly in the short to medium term, lie in the field of low-cost electronic wearables.

(Via Popular Mechanics.)

Supercapacitor batteries 'that charge in seconds and last for a week'

A team of researchers at the University of Central Florida have come up with a tiny battery, based on supercapacitor technology, which charges much faster, lasts longer between charges and has a far longer lifespan that the batteries currently used in smartphones around the world.

Scientists report that the little battery needs to be charged for only a few seconds and will then last for days. And whereas typical lithium-ion batteries show deteriorating performance after 300 to 500 full charges, this battery is good for 30,000 charges.

iPhone 9 release date rumours UK: Supercapacitor

Picture credits: ACS Nano (left), UCF (right)

Nitin Choudhary, a member of the research term, said that if you replaced smartphone batteries with the supercapacitors, "you could charge your mobile phone in a few seconds and you wouldn't need to charge it again for over a week".

The researchers stressed that the technology is not yet close to commercial applications. "But this is a proof-of-concept demonstration and our studies show there are very high impacts for many technologies," said Yeonwoong Jung, an assistant professor with joint appointments at the NanoScience Technology Centre and the Materials Science and Engineering Department.

(Via Wired)

All-solid-state Lithium-ion battery cells

A University of Texas team led by 94-year-old John Goodenough has developed what has been coined as an "all-solid-state" lithium-ion battery cell. What does that mean to us at home? Essentially, batteries developed using the new technology should be non-combustable and have a longer battery life than current batteries while boasting much faster rates of charge and discharge.

How? The new technology uses glass electrolyte instead of a liquid solution, essentially eliminating the metal whiskers inside batteries that bridges the gaps between positive and negative plates when a cell is charged too quickly. The metal whiskers are usually the cause of battery shorting, along with fires and even explosions. The glass greatly increases the energy density of the battery with 1200 cycles on a cell with no impact on battery life, and will still work down to -20 degrees celsius.

The team has noted that the technology is scalable to nearly all kinds of applications, from use in iPhones or MacBooks to powering electric cars or being used in Tesla's PowerWall battery. According to the University of Texas Office of Technology Commercialization, it's actively negotiating license agreements with multiple companies in the battery industry, leading us to believe that Apple may feature the new battery tech in its products in the next few years.

Next: Screen developments